Rightmost two digits of 3^999

 Posts: 2
 Joined: Sun Apr 12, 2015 2:59 pm
Rightmost two digits of 3^999
What are the rightmost two digits of $3^{999}$ ? What's the process in problems of this kind?
Last edited by Phlembac Adib Hasan on Mon Dec 07, 2015 10:56 pm, edited 1 time in total.
Reason: Latexed
Reason: Latexed
 Phlembac Adib Hasan
 Posts: 1013
 Joined: Tue Nov 22, 2011 7:49 pm
 Location: 127.0.0.1
 Contact:
Re: Rightmost two digits of 3^999
Hello, welcome to this forum. Please use latex for maths in future. It honestly makes our work a lot easier.
Check this post for a brief introduction to latex: http://www.matholympiad.org.bd/forum/vi ... p?f=25&t=2
Check this post for a brief introduction to latex: http://www.matholympiad.org.bd/forum/vi ... p?f=25&t=2
Welcome to BdMO Online Forum. Check out Forum Guides & Rules: http://forum.matholympiad.org.bd/viewtopic.php?f=25&t=6
Re: Rightmost two digits of 3^999
Take (mod $100$).You can read this to learn how to solve such kind of problems.The last part of the note is about $\text{Modular Arithmatic}$.
https://docs.google.com/viewer?a=v&pid= ... MDZjYWNkMg
https://docs.google.com/viewer?a=v&pid= ... MDZjYWNkMg
I like girls and mathematics; both are beautiful.
Re: Rightmost two digits of 3^999
firstly, we can get 3^15=== 7 (mod100) =>3^990 ===7^66
Now,7^4=== 1(mod 100) =>7^66 === 1*7^2 = 49
and, 3^9=== 83 (mod100)
So, 3^999 = 3^990 *3^9=== 49*83 = 4067 === 67
Rightmost two digits of 3^999 is 7 and 6
Now,7^4=== 1(mod 100) =>7^66 === 1*7^2 = 49
and, 3^9=== 83 (mod100)
So, 3^999 = 3^990 *3^9=== 49*83 = 4067 === 67
Rightmost two digits of 3^999 is 7 and 6
 samiul_samin
 Posts: 276
 Joined: Sat Dec 09, 2017 1:32 pm
 Location: Shantinagar,Digharkanda,Mymensingh
 Contact:
Re: Rightmost two digits of 3^999
Please,use LATEX. It makes your solution more readable.
This is BdMO National Higher Secondary 2006 problem.
It can easily be solved by using $\phi$ function.
$\int^{\infty}_0 e^{x} dx=1$