Imo 3 2017 (the most cute and difficult... xd)

Discussion on International Mathematical Olympiad (IMO)
Katy729
Posts: 40
Joined: Sat May 06, 2017 2:30 am

Imo 3 2017 (the most cute and difficult... xd)

Unread post by Katy729 » Fri Aug 04, 2017 1:31 pm

A hunter and an invisible rabbit play a game in the Euclidean plane. The rabbit's starting point, $A_0,$ and the hunter's starting point, $B_0$ are the same. After $n-1$ rounds of the game, the rabbit is at point $A_{n-1}$ and the hunter is at point $B_{n-1}.$ In the $n^{\text{th}}$ round of the game, three things occur in order:
  1. The rabbit moves invisibly to a point $A_n$ such that the distance between $A_{n-1}$ and $A_n$ is exactly $1.$
  2. A tracking device reports a point $P_n$ to the hunter. The only guarantee provided by the tracking device to the hunter is that the distance between $P_n$ and $A_n$ is at most $1.$
  3. The hunter moves visibly to a point $B_n$ such that the distance between $B_{n-1}$ and $B_n$ is exactly $1.$
Is it always possible, no matter how the rabbit moves, and no matter what points are reported by the tracking device, for the hunter to choose her moves so that after $10^9$ rounds, she can ensure that the distance between her and the rabbit is at most $100?$

Post Reply